
CORRELATIONS

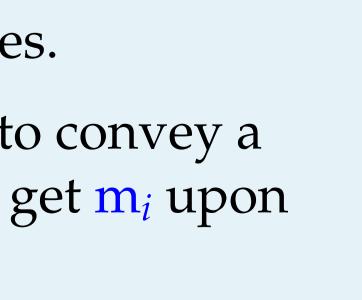
- verbal agreement affixes *or* as pronouns (Berdičevskis et al. 2020);
- syncretisation was accompanied by the rise of subject pronouns.

- Causality *syncretisation* \rightarrow *overt subjects* has been hypothesized.
- model of causality?

MODELS

- less likely with ambiguous ones.
- degree of ending ambiguity in the data. [in progress]

MODEL A

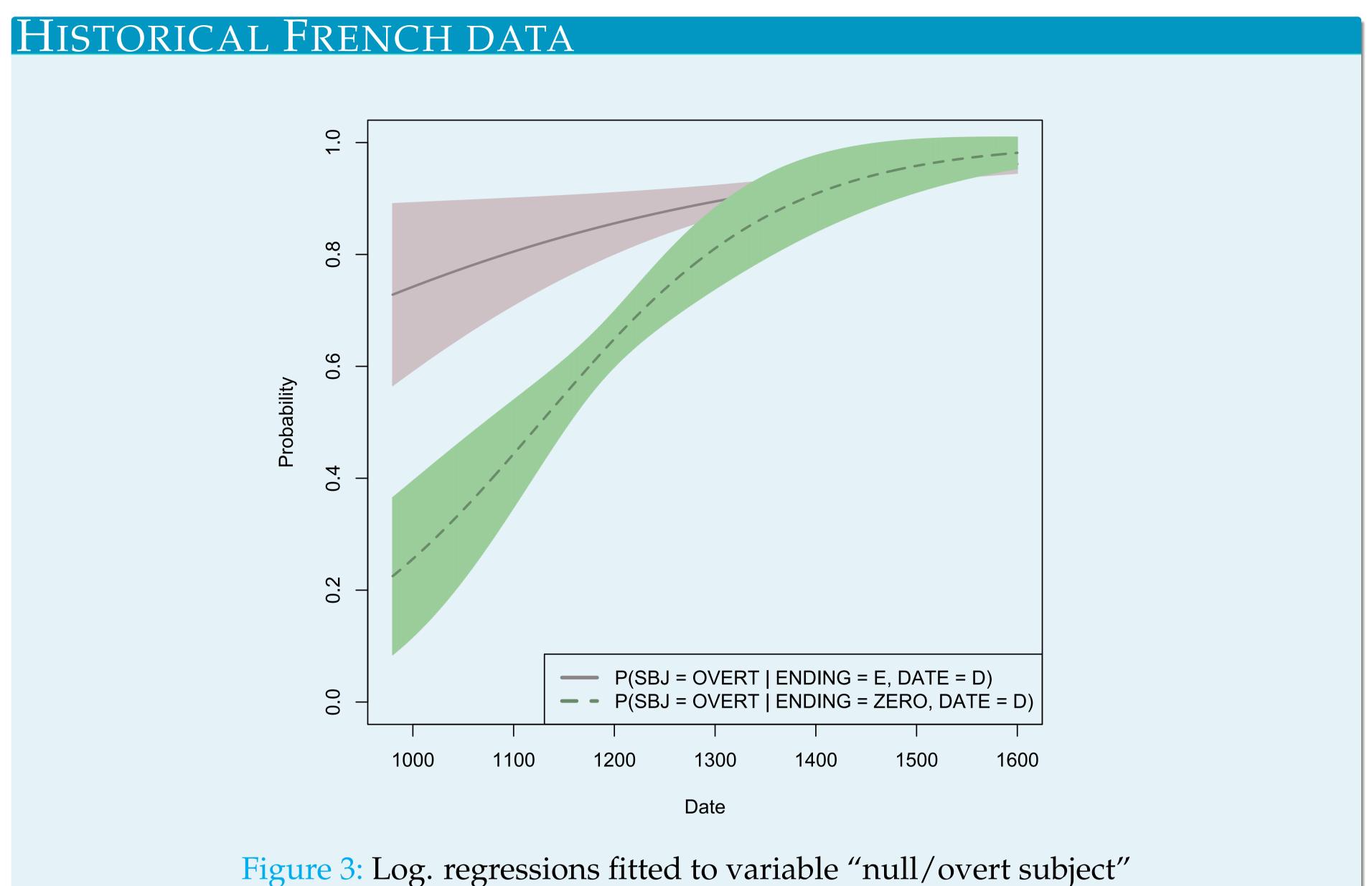

Rational Speech Act model (Frank and Goodman 2012):

• Listener = probability distribution over information states.

Speaker, when assigning probabilities to utterances $u_1 \dots u_n$ to convey a meaning m_i , takes into account how **likely** the Listener is to get m_i upon hearing a given u_i , and how costly u_i is.

- Speaker's utility function (1) $U_S(\mathbf{u}_i; \mathbf{s}_i) = \log \mathbf{L}(\mathbf{s}_i \mid \mathbf{u}_i) - C(\mathbf{u}_i)$
- $P_S(u \mid s) \propto \exp(\alpha(\log L_0(s \mid u) C(u)))$ (2)

CAPTURING HISTORICAL CAUSALITY VIA GAME-THEORETIC INTERACTIONS


Scontras et al. (2017)

	LEMENTATION
▏┹┹╵┹╺┹╶┛	

MEANING
{[1st person
{[1st person
{[2nd perso
{[2nd perso
{[3rd perso
{[3rd perso
{[1st person
{[3rd perso
implified uttera

T // T 7 /	INPUT	OUTPUT
LISTENER: "V-zero"		
	a) meaning of "V-zero" b) pri-	ors
	P([1st person]) = 0.33	P([1st person]) = 1
	P([2nd person]) = 0.33	P([2nd person]) = 0
	P([3rd person]) = 0.33	P([3rd person]) = 0
LISTENER: "V-e"		
	a) meaning of "V-e" b) priors	
	P([1st person]) = 0.33	P([1st person]) = 0.5
	P([2nd person]) = 0.33	P([2nd person]) = 0
	P([3rd person]) = 0.33	P([3rd person]) = 0.5
I ICTENIED. "to $V o'$		
LISTENER: "je-V-e"		
	a) meaning of "je-V-e" b) pric	
	P([1st person]) = 0.33	P([1st person]) = 1
	P([2nd person]) = 0.33	P([2nd person]) = 0
	P([3rd person]) = 0.33	P([3rd person]) = 0

Figure 2: Predicted probabilities of subject encoding

PROBLEMS
The model tolera
 Null subjects dis

MODEL B [IN PROGRESS]					
 Reinforcement learning agents with two competing abstract grammars. 					
Success = the message is interpreted as intended.					
Grammar	Output	SUCCESS/FAILURE	Reinforcement		
SBJ-NULL	V-zero	1/0	always		
SBJ-NULL	V-e	p/q	?		
SBJ-OVERT	il-V-zero	1/0	always		
SBJ-OVERT	il-V-e	1/0	always		
• To build in: degree of ambiguity (\approx Shannon's entropy) for new endings					

REFERENCES

Berdičevskis, Aleksandrs, Karsten Schmidtke-Bode, and Ilja Seržant. 2020. Subjects tend to be coded only once: Corpus-based and grammar-based evidence for an efficiency-driven trade-off. In *Proceedings of the 19th* International Workshop on Treebanks and Linguistic Theories, 79–92. Frank, Michael, and Noah Goodman. 2012. Predicting pragmatic reasoning in language games. Science 336:998–998. Kroch, Anthony, and Beatrice Santorini. 2021. Penn-BFM Parsed Corpus of Historical French (PPCHF). URL https://github.com/beatrice57/mcvf-plus-ppchf/. Scontras, Gregory, Michael Henry Tessler, and Michael Franke. 2017. Probabilistic language understanding: An introduction to the Rational Speech Act framework. Technical report, https://michael-franke.github.io/probLang. Simonenko, Alexandra, Benoit Crabbé, and Sophie Prévost. 2019. Null subject loss and subject agreement syncretisation: Quantificational models for Medieval French. *Language Variation and Change* 31:275–301.

ALEXANDRA.SIMONENKO@UGENT.BE

rates null subjects, Modern French does not.

sappear with unambiguous endings (e.g. "zero") as well.

• To build in: degree of ambiguity (\approx Shannon's entropy) for new endings growing over time (\sim success probability for SBJ-NULL going down)